Rapid gain adaptation affects the dynamics of saccadic eye movements in humans

نویسندگان

  • Andreas Straube
  • Heiner Deubel
چکیده

The effect of rapid gain adaptation on the dynamics of visually guided saccades was investigated in six human subjects by using a search coil system. Saccadic adaptation was induced artificially by dislocating the target (by about 30% of the initial step) either forward (gain increase) or backward (gain decrease) during the primary saccade ("double-step paradigm"). Duration, peak velocity and peak acceleration and deceleration of a "standard 12 deg saccade" were computed from the data and were compared for the conditions of gain decrease, gain increase and the control without gain adaptation. The gain as well as the peak velocity and duration of the saccades showed an increased variability during the adaptation. In general, the abducting saccades had a higher peak acceleration than the adducting saccades, and all subjects showed an idiosyncratic pattern of the acceleration and deceleration. In the gain increase paradigm the subjects showed an increase in the duration and a decrease in the peak velocity. In the gain decrease paradigm there was a significant smaller ratio of peak acceleration/peak deceleration compared to the gain increase and the control condition. The findings demonstrate that rapid gain adaptation influences the dynamics of saccades in a specific way: peak saccadic velocity decreases and duration increases in the gain increase paradigm and peak acceleration/peak deceleration decreases in the gain decrease paradigm. Moreover, these results also suggest that the deceleration is neuronally controlled and not merely a result of mechanical constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccadic gain modification: visual error drives motor adaptation.

The brain maintains the accuracy of saccadic eye movements by adjusting saccadic amplitude relative to the target distance (i.e., saccade gain) on the basis of the performance of recent saccades. If an experimenter surreptitiously moves the target backward during each saccade, thereby causing the eyes to land beyond their targets, saccades undergo a gradual gain reduction. The error signal driv...

متن کامل

The characteristics and neuronal substrate of saccadic eye movement plasticity.

Saccadic eye movements are shifts in the direction of gaze that rapidly and accurately aim the fovea at targets of interest. Saccades are so brief that visual feedback cannot guide them to their targets. Therefore, the saccadic motor command must be accurately specified in advance of the movement and continually modified to compensate for growth, injury, and aging, which otherwise would produce...

متن کامل

Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm.

The adaptation of saccadic eye movements to environmental changes occurring throughout life is a good model of motor learning and motor memory. Numerous studies have analyzed the behavioral properties and neural substrate of oculomotor learning in short-term saccadic adaptation protocols, but to our knowledge, none have tested the persistence of the oculomotor memory. In the present study, the ...

متن کامل

Saccadic adaptation in Chiari type II malformation.

BACKGROUND Saccadic adaptation corrects errors in saccadic amplitude. Experimentally-induced saccadic adaptation provides a method for studying motor learning. The cerebellum is a major participant in saccadic adaptation. Chiari type II malformation (CII) is a developmental deformity of the cerebellum and brainstem that is associated with spina bifida. We investigated the effects of CII on sacc...

متن کامل

Context cue-dependent saccadic adaptation in rhesus macaques cannot be elicited using color.

When the head does not move, rapid movements of the eyes called saccades are used to redirect the line of sight. Saccades are defined by a series of metrical and kinematic (evolution of a movement as a function of time) relationships. For example, the amplitude of a saccade made from one visual target to another is roughly 90% of the distance between the initial fixation point (T0) and the peri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1995